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Abstract

When the goal is to achieve the best correct
classification rate, cross entropy and mean
squared error are typical cost functions used
to optimize classifier performance. However,
for many real-world classification problems,
the ROC curve is a more meaningful perfor-
mance measure. We demonstrate that min-
imizing cross entropy or mean squared error
does not necessarily maximize the area un-
der the ROC curve (AUC). We then consider
alternative objective functions for training a
classifier to maximize the AUC directly. We
propose an objective function that is an ap-
proximation to the Wilcoxon-Mann-Whitney
statistic, which is equivalent to the AUC. The
proposed objective function is differentiable,
so gradient-based methods can be used to
train the classifier. We apply the new objec-
tive function to real-world customer behav-
ior prediction problems for a wireless service
provider and a cable service provider, and
achieve reliable improvements in the ROC
curve.

1. Introduction

For many real-world classification problems, the typi-
cal classification accuracy (correct classification rate)
is not a sufficient metric for classifier performance
(Provost et al., 1998). Consider the problem of pre-
dicting churn, that is, which customers will switch
from one service provider to another. In the telecom-
munications industry, typical monthly churn rates are
in the neighborhood of 2% (Mozer et al., 2000). The
trivial solution of labeling all customers as nonchurn-

ers yields a 98% correct classification rate. In general,
classification accuracy can be misleading for a two-
class problem when the class distribution is highly im-
balanced. To elaborate, consider the simple example
of a data set consisting of 10 positive and 90 nega-
tive samples. Suppose the classifier outputs are binary,
and that there are 8 errors. Regardless of which sam-
ples are misclassified, the classification accuracy will
be 92%. However, consider two different cases lead-
ing to 8 total errors. In the case where all 8 errors
are among the negative samples, the false positive rate
(rate of negative samples being labeled as positive) is
9% and the false negative rate (rate of positive samples
being labeled as negative) is 0%. In the case where all
8 errors are among the positive samples, the false pos-
itive rate will be 0% but the false negative rate will
be 80%. The two cases yield quite different errors yet
would be indistinguishable using the measure of clas-
sification accuracy.

An alternative means of evaluating classifier perfor-
mance that does not confound the false-positive and
false-negative error rates is the Receiver Operating
Characteristic or ROC curve (Green & Swets, 1966).
The ROC curve depicts the performance of a classifier
by plotting the true positive rate against the false posi-
tive rate. Assuming that a classifier produces a contin-
uous output (e.g., class posterior probabilities), then
the output must be thresholded to label each sample as
positive or negative. Thus, for each setting of the deci-
sion threshold, a true-positive and a false-positive rate
is obtained. By varying the decision threshold over a
range from 0 to 1, the ROC curve is produced. The
upper graph in Figure 4 includes three ROC curves
with the true and false positive rates on the y- and
x-axes, respectively. The more bowed the curve is to-
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ward the upper left corner, the better is the classifier’s
ability to discriminate between the two classes. Thus,
area under the ROC curve (AUC) is a general, ro-
bust measure of classifier discrimination performance,
regardless of the decision threshold, which may be un-
known, changeable over time, or might vary depending
on how the classifier will be used.

It seems that the AUC is not easy to compute. How-
ever, note that the ROC curve of a finite set of samples
is based on a step function, and it can be shown that
the AUC is exactly equal to the normalized Wilcoxon-
Mann-Whitney (WMW) statistic (Mann & Whitney,
1947) in the form:

U =

∑m−1
i=0

∑n−1
j=0 I(xi, yj)
mn

, (1)

where

I(xi, yj) =
{

1 : xi > yj

0 : otherwise , (2)

is based on pairwise comparisons between a sample xi,
i = 0, . . . ,m−1, of random variable X and the sample
yj , j = 0, . . . , n− 1, of random variable Y . If we iden-
tify {x0, x1, . . . , xm−1} as the classifier outputs for m
positive examples, and {y0, y1, . . . , yn−1} as the clas-
sifier outputs for n negative examples, we obtain the
AUC for our classifier via Eq. 1.1 The expression of U
can be further simplified if the {x0, x1, . . . , xm−1} and
{y0, y1, . . . , yn−1} are merged and sorted in ascending
order, yielding U = 1

mn (
∑m−1

i=0 ri − m(m−1)
2 ), where

ri ∈ {0, 1, . . . ,m + n− 1}, i = 0, . . . , m− 1, is the rank
of xi, and

∑m−1
i=0 ri is the Wilcoxon’s Rank Sum statis-

tic (Wilcoxon, 1945). The statistic U is an estimator
of P [X > Y ], but we only emphasize the equivalence
between the WMW statistic and the AUC. The inde-
pendence and other distribution requirements to use
U as a test statistic are irrelevant here.

1We assume that the classifier produces high outputs for
positive classifications and low outputs for negative classi-
fications. We derive the equivalence between the WMW
statistic and the AUC by expressing the AUC as

m−1∑
i=1

m− i

m
·
∑n−1

j=0
I(xi, yj)−

∑n−1

j=0
I(xi−1, yj)

n

+

∑n−1

j=0
I(x0, yj)

n

=

m−1∑
i=0

m− i

m

∑n−1

j=0
I(xi, yj)

n

−
m−2∑
i=0

m− i− 1

m

∑n−1

j=0
I(xi, yj)

n
,

where we assume x0 < x1 < . . . < xm−1.

The ROC curve or the AUC has been utilized ex-
tensively to assess classifier performance (e.g., Hand,
2001; Provost & Fawcett, 1998; Weiss & Provost,
2001), but how to optimize the ROC curve or the AUC
has been rarely addressed. If the goal is to achieve
the best correct classification rate, classifiers such as
neural networks are typically trained by minimizing a
mean squared error (MSE) or the cross-entropy (CE)
objective function, or by maximizing the likelihood
function.2 However, as we will show in Section 2, opti-
mizing classification accuracy by minimizing the MSE
or CE cannot guarantee maximization of the WMW
statistic or the AUC. Thus, if the AUC is the quan-
tity of concern, it would be better to train a classifier
to directly optimize the AUC. Unfortunately, the AUC
itself, even in the equivalent form of WMW statistic, is
nondifferentiable and cannot be optimized by gradient-
based methods. In Verrelst et al. (1998), the authors
recognized the limitation of using the MSE to optimize
the ROC curve, and proposed to numerically calculate
the AUC with the trapezoidal integration rule, and to
maximize the AUC by simulated annealing. However,
the paper reported that the simulated annealing ap-
proach does not improve the results over the MSE cri-
terion. In Mozer et al. (2001), several approaches were
proposed to try to improve a specific point on the ROC
curve. However, these approaches assume that the de-
cision threshold and/or the misclassification costs are
known. Here, the focus of our work is to improve the
overall ROC curve, measured by the AUC. Caruana
et al. (1996) recognized that MSE might overfit the
model when only relative ranking rather than explicit
discrimination is required. They proposed an algo-
rithm called Rankprop that tried to learn the rank-
ings iteratively. However, the convergence properties
of this algorithm were questionable, and we have ex-
perimentally found that it is difficult to obtain conver-
gence. In the information retrieval field, some related
work exists on optimizing ranks, (e.g., Bartell et al.,
1994; Vogt & Cottrell, 1998). Bartell et al. use a
differentiable function based on the Guttman’s Point
Alienation statistic to measure the correlation between
the target and estimated ranking. Vogt and Cottrell
showed that this measure can be seen as a scaled ver-
sion of d′ = (x̄ − ȳ)/σy, where x̄ is the mean of the
xi and ȳ and σy are the mean and standard devia-
tion of the yj . We have explored using d′ and its sev-
eral variations for training neural network classifiers,
and have found that they did not improve the AUC
in our real-world data sets (Rattenbury & Yan, 2001).
Finally, one would simply weight positive and nega-

2For a two-class problem, maximizing likelihood is
equivalent to minimizing cross entropy.



tive samples differently during training, especially for
imbalanced data sets, to improve the AUC. Weiss &
Provost (2001) report that the best weight (class dis-
tribution) needs to be experimentally determined for
each data set. Later we will compare the best ROC
curve (in terms of the AUC) obtained by trying several
weights for the MSE training with the proposed new
algorithm’s results.

2. Classification accuracy and the AUC

The AUC and classification accuracy criteria can be
dissociated from one another, i.e., the AUC is sensi-
tive to quite different aspects of a classifier than the
classification accuracy. We argue this point with a
two-alternative classifier that is used to assign a “pos-
itive” or “negative” label to each sample, in the follow-
ing manner. We assume that the classifier produces a
continuous output, and is run on a data set consisting
of m positive and n negative samples. The set of sam-
ples can be ranked by their classifier output, where the
rank varies from 0, the rank of the lowest output, to
m+n− 1. Samples with identical output are assigned
the average rank. Given some threshold θ, such that
all samples with rank ≥ θ are labeled “positive” and
other samples are labeled “negative,” one can deter-
mine which samples are labeled correctly and which
are errors. If k is the total number of errors in the
data set, the classification accuracy is 1− k/(m + n).
In contrast, the WMW statistic depends not only on
k but also on the ranks of the samples which are clas-
sified incorrectly. Assuming k < n, for each θ, there

are
∑min{k,m}

x=0

(
m + k − 2x

k − x

)(
n− k + 2x

x

)
pos-

sible values of the WMW statistic depending on the
ranks of the k misclassified samples. To simplify, as-
sign 1 to all samples with rank ≥ θ and 0 to others.
Then, from Eq. 1, the mean and variance of this set of
WMW statistic values, which associate with the same
classification accuracy 1−k/(m+n), can be obtained:

µu =
min{k,m}∑

x=0

(
m
x

)(
n

k − x

)

(
m + n

k

)
(

1−
k−x

n + x
m

2

)
,

(3)

σ2
u =

min{k,m}∑
x=0

(
m
x

)(
n

k − x

)

(
m + n

k

)
(

1−
k−x

n + x
m

2
− µw

)2

.

(4)

Figure 1 (upper) shows an example of the relation-
ship between σu and the positive-example proportion
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Figure 1. Upper: σu increases with the decrease of m/(m+
n), when the classification accuracy is fixed at 0.8 (m+n =
100 and k = 10). Lower: The WMW statistic and MSE
variation during training for the UC Irvine Credit Approval
data.

m/(m + n) when classification accuracy is fixed. We
can see that the WMW statistic becomes increas-
ingly dissociated from classification accuracy when the
class distribution becomes more imbalanced. Gener-
ally, minimizing the MSE or CE for optimizing clas-
sification accuracy cannot guarantee maximization of
the WMW statistic or the AUC, especially for imbal-
anced data sets. Figure 1 (lower) demonstrates that
the WMW statistic does not necessarily increase with
MSE’s decrease when the MSE is minimized during
training.

3. Direct optimization of the AUC

Here we propose an alternative objective function for
training classifiers to directly optimize the ROC curve.
The proposed objective function can be applied to any
parametric classifier. For any such classifier, one can
optimize the objective function with respect to the pa-
rameters using gradient based methods. In the results
below, we apply the proposed objective to a typical
multilayer perceptron (MLP) with softmax outputs,
with a single hidden layer and direct connection be-
tween the input and output layers.



3.1. New objective functions

To directly optimize the AUC, we can try to maximize
the WMW statistic in Eq. 1. However, the function
I(xi, yj) in Eq. 2 is nondifferentiable. A differentiable
approximation to Eq. 2 is the sigmoid function

S(xi, yj) =
1

1 + e−β(xi−yj)
, (5)

where β > 0. Then, one can try to maximize

US =

∑m−1
i=0

∑n−1
j=0 S(xi, yj)
mn

. (6)

However, as shown in Figure 2, S(xi, yj) with a small
β, e.g., β = 2, softens I(xi, yj) too much when 0 ≤
xi ≤ 1 and 0 ≤ yj ≤ 1. A large β would make S(xi, yj)
close to I(xi, yj), but this brings in numerical problems
during optimization because of steep gradients. For
the large data sets in our experiments, we have seen
that the optimization could not proceed successfully
with β > 2. Alternatively, we use the differentiable
function

R1(xi, yj) =
{

(−(xi − yj − γ))p : xi − yj < γ
0 : otherwise ,

(7)
where 0 < γ ≤ 1 and p > 1, and train a classifier by
minimizing the objective

UR =
m−1∑

i=0

n−1∑

j=0

R1(xi, yj). (8)

R1(xi, yj) is shown in Figure 2 with S(xi, yj) and as
well another function

R2(xi, yj) =
{

(xi − yj − γ)p : xi − yj > γ
0 : otherwise , (9)

where 0 < γ ≤ 1 and p > 1. R2(xi, yj) can be regarded
as an approximation to I(xi, yj), while R1(xi, yj) ap-
proximates I(−xi,−yj). We have found that maximiz-
ing

∑m−1
i=0

∑n−1
j=0 R2(xi, yj) is ineffective to maximize

the WMW statistic, because it makes the optimiza-
tion focus on maximizing the difference between xi

and yj rather than on moving more pairs of xi and yj

to satisfy xi − yj > γ, which is the key notion in the
WMW statistic using I(xi, yj). Instead, during the
process of minimizing UR, when a positive sample has
a higher output than a negative sample by a margin γ,
this pair of samples will not contribute to the objec-
tive function. Essentially, the influence of the training
samples is adaptively adjusted according to the pair-
wise comparisons during training. Note that the posi-
tive margin γ in UR is needed for better generalization
performance.
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Figure 2. S(xi, yj), R1(xi, yj), and R2(xi, yj) compare
with I(xi, yj), where β = 2 in S(xi, yj), γ = 0.3 and p = 2
in R1(xi, yj), and γ = 0.1 and p = 2 in R2(xi, yj).

3.2. Discussion of UR and US

First, we look at the training process of the different
objective functions over the data set SPECTF heart
in the UC Irvine machine learning repository, which
has predefined training and test sets. Figure 3 shows
the variation of the WMW statistic U in Eq. 1 as a
function of the number of epochs of training, for both
the training and test sets, for optimizing four objec-
tive functions, where γ = 0.1 and p = 2 in R1(xi, yj),
and β = 2 in S(xi, yj). We can see that minimiz-
ing the objective function UR based on R1(xi, yj) ob-
tains the largest WMW statistic for both training
and test. Although minimizing CE achieves the same
WMW statistic for the training set, it obtains the low-
est WMW statistic for the test data. Overfitting is
observed for both MSE and CE based training, but
R1(xi, yj) based training does not incur obvious over-
fitting. Moreover, even if early stopping can be applied
so that the MSE or CE training can stop when the
value of the WMW statistic over the test set reaches
the maximum, this maximum value is still smaller than
the final WMW statistic obtained by minimizing UR.
We will see that this is true in our other experiments
as well. It is also obvious in Figure 3 that maximizing
US based on S(xi, yj) is inferior to minimizing UR.

The upper panel of Figure 4 presents the ROC curves
for the UC Irvine Credit Approval data set, based on
10-fold cross validation. The figure shows that the
objective function UR generates a significantly better
ROC curve than CE- and MSE-based training. Here,
we chose γ = 0.7 and p = 2 for R1(xi, yj). A natural
question is then how to choose γ and p. As shown in
Figure 4 (lower), the WMW statistic U , i.e., the AUC,
for the test data is quite insensitive to γ over a large
range. In general, we can choose a value between 0.1
and 0.7 for γ. Also, we have found that p = 2 or 3
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Figure 3. The WMW statistic variation over the training
set (upper) and test set (lower) for the SPECTF heart data
as a function of number of epochs of training.

achieves similar, and generally the best results.

4. Applications

4.1. Churn prediction

In the wireless telecommunications industry, it costs
around five times as much to sign on a new subscriber
as to retain an existing one. It is thus crucial to
predict customer behavior and proactively build last-
ing customer relationships. We build neural network
models to predict churn, using both static customer
data such as demographics and application informa-
tion, and time series data of historical usage, billing,
and customer service. Up to one year’s worth of past
usage, billing, and customer service data can be used
to predict which customers will likely churn within the
next one or two months. For example, a model is
trained over input data from June to September, with
the class label (churn or nonchurn) given for October.
The trained model is then used over data from July
to October to make predictions for November. The
training and test data extracted from different time
windows make the problem even more difficult because
of the data nonstationarity issue (Yan et al, 2001).

The results in this study are based on data sets from
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Figure 4. Upper: The ROC curves for 10-fold cross valida-
tion over Credit Approval. The results are insensitive to
the number of hidden units, and these curves are based on
0 hidden unit. Lower: The WMW statistic over the test
data at different γ’s for Credit Approval. The test data is
the union of the 10 out-of-sample subsets for the 10-fold
cross validation.

a major US wireless service provider. The number of
customers in the training set is close to 70,000, and the
test set from a forward-shifted time window has over
70,000 customers. Six months past usage, billing, and
customer service data were available for both train-
ing and test sets. The task is to predict churn over a
two month window, for which the average churn rate
is roughly 6%. 134 raw features were extracted from
a variety of data sources. After preprocessing of the
raw data, a 55-dimensional feature vector was used
to represent each customer. In Figure 5 (upper), we
compare the ROC curves over the test data by differ-
ent training methods. The model trained by minimiz-
ing the new objective function UR in Eq. 8 achieves
a better ROC curve than the models trained by MSE
or CE. Moreover, by trying several weights for posi-
tive samples during the MSE-based training, we have
found weighting all the positive samples by 2 (versus 1
for all negative samples) achieved the best ROC curve
over the test set. Still, we can see in Figure 5 that this
ROC curve, obtained by extensive search of weights,
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Figure 5. Upper: The ROC curves for churn prediction for
a major US wireless service provider. The MLP structure
has 5 hidden units. Lower: The WMW statistic variation
over the training and test sets during training for the churn
prediction model. Here, γ = 0.3 and p = 2 in R1(xi, yj).

is overall worse than the one achieved by minimizing
UR. We also show the training process in Figure 5
(lower), which compares the variation of the WMW
statistic U during training over both the training and
test sets for the new objective function UR and MSE.
Similar to previous results, minimizing the new objec-
tive function obtains larger WMW statistic for both
training and test data, and, unlike MSE-based train-
ing, it does not overfit the training data. Note again
that even the largest value of the test set WMW statis-
tic for MSE minimization (at epoch 13) is smaller than
the final WMW statistic obtained by minimizing UR.

4.2. Cross-sell acceptance prediction

In this application, we build models for an US cable
service provider to predict which customers will likely
accept a cross-sell offer of a particular new service. Ac-
curate prediction of the acceptance can significantly
save the service provider’s campaign costs and dra-
matically improve the offer acceptance rate by target-
ing only those customers who will likely accept the
new service. From the similar data sources to those
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Figure 6. Upper: The ROC curves for predicting new ser-
vice acceptance for a major US cable service provider.
The MLP structure has 5 hidden units. Lower: The
WMW statistic variation over the training and test sets
during training for the acceptance prediction model. Here,
γ = 0.05 and p = 2 in R1(xi, yj).

of churn prediction, 135 raw data fields are extracted,
and 41 transformed features are used as the neural
network inputs. In this study, five months worth of
past usage, billing, and customer service data are used
to predict which customers will likely accept the new
service within the next month. Training and test sets
were extracted from different time windows, with the
test data window forward-shifted by one month. For
training, we have over 130,000 customers with a posi-
tive sample rate of only 0.5%. The test set consists of
a similar number of customers with a positive sample
rate of 0.7%. Figure 6 (upper) demonstrates again that
the new objective function UR achieves substantial im-
provement of the ROC curve over both the MSE and
CE training. For this data set, weighting the positive
samples by 10 for the MSE training obtained the best
ROC curve over the test set, but it is still worse than
the one achieved by minimizing RU . Figure 6 (lower)
shows the difference between the training processes of
the new objective function UR and the CE.



5. Extensions

5.1. Multi-membership classification

In some applications, samples are associated with
multiple classes, e.g., people may have multiple dis-
eases, and these are called multi-membership sam-
ples. We extend our work here to the following multi-
membership classification problem. In addition to
churn prediction, service providers would also like to
know in advance why a subscriber wants to churn so
that the customer service representative (CSR) can
make appropriate offers and try to save the subscriber.
Some subscribers may have multiple reasons, e.g.,
competition and billing problem. Also, the CSR can
generally try more than one reason during the con-
versation with a subscriber. Thus, the conventional
accuracy, just measuring if the predicted top reason is
correct, is insufficient. Instead, this application actu-
ally requires ranking the reasons for each subscriber.

Assume there are L predefined reason categories, and
subscriber k, k = 0, . . . ,K − 1, is associated with mk

reasons, 0 < mk ≤ L. An MLP structure with L
outputs is trained over these K samples. Denote xki,
i = 0, · · · ,mk−1, as the classifier output for subscriber
k’s associated reason i, and ykj , j = 0, · · · , L−mk−1,
as the output for reason j which is not a stated reason
of subscriber k. We then train the MLP model by
minimizing the objective

Um =
K−1∑

k=0

mk−1∑

i=0

L−mk−1∑

j=0

R1(xki, ykj). (10)

We apply this objective function to churn reason pre-
diction for an US cable service provider. Churn rea-
sons are predicted for potential churners in the next
month based on the similar data sources mentioned
in Section 4. The customer base includes more than
330,000 subscribers, but only about 3,100 subscribers
with churn reasons can be used to train the model.
More than 20% of the 3,100 subscribers are associ-
ated with more than one reason. There are 15 pre-
defined reason categories, with the smallest category
consisting of only 0.03% of the churners and the largest
category consisting of 40.8% of the churners. Typi-
cally, reason prediction is a much more difficult prob-
lem than churn prediction because of available training
set size, very noise data, and imbalanced, overlapping
categories. Table 1 shows the 10-fold cross validation
results for the new objective function Um, the MSE,
and just using the prior distribution, i.e., ordering the
reasons for each subscriber according to the prior class
distribution. P1 is defined as the rate of the number of
churners, whose top predicted reason is among the true

reasons, to the total number of churners, and P2 and
P3 are the rates of the number of churners, who have
at least one of the true reasons among the top two or
three predicted reasons, respectively, to the total num-
ber of churners. We can see that the new objective Um

outperforms the MSE for all the accuracy measures.

Method P1 P2 P3

Minimizing Um 0.451 0.766 0.893
Minimizing MSE 0.439 0.734 0.882
Using the priors 0.408 0.731 0.828

Table 1. Accuracy measures of churn reason prediction for
an US cable service provider. The number of hidden units
of the MLP structure is chosen as 5 for both Um- and MSE-
based training.

5.2. Focusing on the lower-left part of the
ROC curve

If the classifier produces high outputs for positive clas-
sifications and low outputs for negative classifications,
the lower-left part of the ROC curve measures the per-
formance over those samples with higher classifier out-
puts. This portion of the ROC curve is important be-
cause many applications restrict the actions, e.g., con-
tacting customers, among the classifier outputs above
a certain threshold or within a certain percentage in
the top. One way to extend our algorithm to focusing
on the lower-left part of the ROC curve is to map the
classifier output s by the function

f(s) =
{

(s− β · µs)α : s > β · µs

0 : otherwise , (11)

with µs =
∑m−1

i=0
xi+

∑n−1

j=0
yj

m+n , the mean value of the
classifier outputs. Here, α > 1 but is close to 1, e.g.,
α = 1.1, and β ≥ 1 and is generally chosen as 1. Thus,
this function maps the classifier outputs below β ·µs to
zero. Then, when we train a classifier by minimizing
the objective

Uf =
m−1∑

i=0

n−1∑

j=0

R1(f(xi), f(yj)), (12)

the optimization is focused on those samples with out-
puts larger than β ·µs. Figure 7 demonstrates the im-
proved lower-left part of the ROC curve over Credit
Approval achieved by minimizing Uf . Two 10-fold
cross validation ROC curves are shown in Figure 7,
with the curve obtained by minimizing UR replicated
from Figure 4.
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Figure 7. Minimizing Uf improves the lower-left part of the
ROC curve over that obtained by minimizing UR. Here,
for Uf , α = 1.1, β = 1 in f(s), and γ = 0.2, p = 3 in
R1(f(xi), f(yj)).

6. Conclusion and future work

We have demonstrated that mean-squared error and
cross entropy are not the most appropriate objective
functions for training a classifier when the goal is to
maximize the discriminative ability of the classifier
across a range of decision thresholds. We proposed a
new objective function that is a differentiable approxi-
mation to the WMW statistic, or to the area under the
ROC curve. Results both over two UC Irvine data sets
and several real-world customer behavior prediction
problems demonstrate reliable improvements achieved
by our new algorithm. In some cases the magnitude
of the improvement may appear to be small, but the
resulting economic gain is substantial in a large-scale
real world application (Mozer et al., 2001).

Our work can still be extended in several directions.
Hand and Till (2001) proposed a generalization of the
AUC for multi-class classification problems based on
the WMW statistic. The algorithm proposed here can
be directly applied to this generalization, and may be
advantageous for problems with imbalanced class dis-
tribution. Secondly, our work is related to Bayesian
similarity (Breuel, 2001). In (Breuel, 2001), the opti-
mization requires mn training patterns and a subse-
quent stage of simulated annealing. For large m and
n, this process is intractable. We can optimize an ob-
jective associated with Bayesian similarity in a simi-
lar way to the algorithm here for ROC optimization.
Finally, it would also be interesting to extend the al-
gorithm to focus on any specified range of the ROC
curve.
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